Probability-one homotopies in computational science
نویسنده
چکیده
Probability-one homotopy algorithms are a class of methods for solving nonlinear systems of equations that, under mild assumptions, are globally convergent for a wide range of problems in science and engineering. Convergence theory, robust numerical algorithms, and production quality mathematical software exist for general nonlinear systems of equations, and special cases such as Brouwer fixed point problems, polynomial systems, and nonlinear constrained optimization. Using a sample of challenging scientific problems as motivation, some pertinent homotopy theory and algorithms are presented. The problems considered are analog circuit simulation (for nonlinear systems), reconfigurable space trusses (for polynomial systems), and fuel-optimal orbital rendezvous (for nonlinear constrained optimization). The mathematical software packages HOMPACK90 and POLSYS PLP are also briefly described.
منابع مشابه
Theory of Globally Convergent Probability-One Homotopies for Nonlinear Programming
For many years globally convergent probability-one homotopy methods have been remarkably successful on difficult realistic engineering optimization problems, most of which were attacked by homotopy methods because other optimization algorithms failed or were ineffective. Convergence theory has been derived for a few particular problems, and considerable fixed point theory exists, but generally ...
متن کاملNumerical Evidence for a Conjecture in Real Algebraic Geometry
Homotopies for polynomial systems provide computational evidence for a challenging instance of a conjecture about whether all solutions are real. The implementation of SAGBI homotopies involves polyhedral continuation, at deformation and cheater's ho-motopy. The numerical diiculties are overcome if we work in the true synthetic spirit of the Schubert calculus by selecting the numerically most f...
متن کاملar X iv : a lg - g eo m / 9 70 60 04 v 1 1 0 Ju n 19 97 NUMERICAL SCHUBERT CALCULUS
We develop numerical homotopy algorithms for solving systems of polynomial equations arising from the classical Schubert calculus. These homotopies are optimal in that generically no paths diverge. For problems defined by hypersurface Schubert conditions we give two algorithms based on extrinsic deformations of the Grassmannian: one is derived from a Gröbner basis for the Plücker ideal of the G...
متن کاملCommunication: Newton homotopies for sampling stationary points of potential energy landscapes.
One of the most challenging and frequently arising problems in many areas of science is to find solutions of a system of multivariate nonlinear equations. There are several numerical methods that can find many (or all if the system is small enough) solutions but they all exhibit characteristic problems. Moreover, traditional methods can break down if the system contains singular solutions. Here...
متن کاملOn the complexity of optimal homotopies
In this article, we provide new structural results and algorithms for the Homotopy Height problem. In broad terms, this problem quantifies how much a curve on a surface needs to be stretched to sweep continuously between two positions. More precisely, given two homotopic curves γ1 and γ2 on a combinatorial (say, triangulated) surface, we investigate the problem of computing a homotopy between γ...
متن کامل